Boys' Life of Edison - W. H. Meadowcroft |
Many an invention has been made as the result of some happy thought or inspiration, but most inventions are made by men working along certain lines, who set out to accomplish a desired result. It is rarely, however, that a man starts out deliberately, as Edison did, to invent an entirely new type of such an intricate device as a storage battery, with only a vague starting point.
Previous to Edison's work the only type of storage battery known was the one in which lead plates and sulphuric acid were employed. He had always realized the value of a storage battery as such, but never believed that the lead-acid type could fulfil all expectations because of its weight and incurable defects.
About the time that he closed the magnetic iron ore concentrating plant (in the beginning of the present century) Edison remarked to Mr. R. H. Beach, then of the General Electric Company: "Beach, I don't think nature would be so unkind as to withhold the secret of a good storage battery if a real earnest hunt for it is made. I'm going to hunt." And before starting he determined to avoid lead and sulphuric acid.
Edison is frequently asked what he considers to be the secret of achievement. He always replies, "Hard work, based on hard thinking." He has consistently lived up to this prescription to the utmost.
Of all his inventions it is doubtful whether any one of them has called forth more original thought, work, perseverance, ingenuity, and monumental patience than the one we are now dealing with. One of his associates who has been through the many years of the storage-battery drudgery with him said: "If Edison's experiments, investigations, and work on this storage battery were all that he had ever done, I should say that he was not only a notable inventor, but also a great man. It is almost impossible to appreciate the enormous difficulties that have been overcome."
EDISON AT THE DRAUGHTING-BOARD |
From a beginning which was made practically in the dark, it was not until he had completed more than ten thousand experiments that he obtained any positive results whatever. Month after month of constant work by day and night had not broken down Edison's faith in success, and the failure of an experiment simply meant that he had found something else that would not do, thus bringing him nearer the possible goal.
After this immense amount of preliminary work he had obtained promising results in a series of reactions between nickel and iron, and was then all afire to push ahead. He therefore established a chemical plant at Silver Lake, New Jersey, and, gathering around him a corps of mechanics, chemists, machinists, and experimenters, settled down to one of his characteristic struggles for supremacy. To some extent it was a revival of the old Menlo Park days and nights.
The group that took part in these early years of Edison's arduous labors included his old-time assistant, Fred Ott, together with his chemist, J. W. Aylsworth, as well as E. J. Ross, Jr.; W. E. Holland, and Ralph Arbogast, and a little later W. G. Bee, all of whom have grown up with the battery and still devote their energies to its commercial development.
One of these workers, relating the strenuous experiences of these few years, says: "It was hard work and long hours, but still there were some things that made life pleasant. One of them was the supper-hour we enjoyed when we worked nights. Mr. Edison would have supper sent in about midnight, and we all sat down together, including himself. Work was forgotten for the time, and all hands were ready for fun. I have very pleasant recollections of Mr. Edison at these times. He would always relax and help to make a good time, and on some occasions I have seen him fairly overflow with animal spirits, just like a boy let out of school. He was very fond of telling and hearing stories, and always appreciated a joke. After the supper-hour was over, however, he again became the serious, energetic inventor, deeply immersed in the work in hand."
Another interesting and amusing reminiscence of this period of activity has been told by another of the family of experimenters:
"Sometimes when Mr. Edison had been working long hours he would want to have a short sleep. It was one of the funniest things I ever witnessed to see him crawl into an ordinary roll-top desk and curl up and take a nap. If there was a sight that was still more funny, it was to see him turn over on his other side, all the time remaining in the desk. He would use several volumes of Watts' Dictionary of Chemistry for a pillow, and we fellows used to say that he absorbed the contents during his sleep, judging from the flow of new ideas he had on waking."
Such incidents as these serve merely to illustrate the lighter moments that relieved the severe and arduous labors of the strenuous five years of the early storage-battery work of Edison and his associates. Difficulties there were a-plenty, but these are what Edison usually thrives on. As another co-worker of this period says: "Edison seemed pleased when he used to run up against a serious difficulty. It would seem to stiffen his backbone and make him more prolific of new ideas. For a time I thought I was foolish to imagine such a thing, but I could never get away from the impression that he really appeared happy when he ran up against a serious snag."
It would be out of the question in a book of this kind to follow Edison's trail in detail through the innumerable twists and turns of his experimentation on the storage battery, for they would fill a big volume. The reader may imagine how extensive they were from the reply of one of his laboratory assistants, who, when asked how many experiments were made on the storage battery since the year 1900, replied: "Goodness only knows! We used to number our experiments consecutively from one to ten thousand, and when we got up to ten thousand we turned back to one and ran up to ten thousand again, and so on. We ran through several series—I don't know how many, and have lost track of them now, but it was not far from fifty thousand."
The mechanical problems in devising this battery were numerous and intricate, but the greatest difficulty that Edison had to overcome was the proper preparation of nickel hydrate for the positive and iron oxide for the negative plate. He found that comparatively little was known by manufacturing chemists about these compounds. Hence it became necessary for him to establish his own chemical works and put them in charge of men specially trained by himself.
After an intense struggle with these problems, lasting over several years, the storage battery was at length completed and put on the market. The public was ready for it and there was a rapid sale.
Continuous tests of the battery were carried on at the laboratory, as well as practical and heavy tests in automobiles, which were kept running constantly over all kinds of roads under Edison's directions. After these tests had been going on for some time the results showed that occasionally a cell here and there would fall short in capacity.
This did not suit Edison. He was determined to make his storage battery a complete success, and after careful thought decided to shut down until he had overcome the trouble. The customers were satisfied and wanted to buy more batteries, but he was not satisfied and would sell no more until he had made the battery perfect.
He therefore shut down the factory and went to experimenting once more. The old strenuous struggle set in and continued nearly three years before he was satisfied beyond doubt that the battery was right. In the early summer of 1909 Edison once more started to manufacture and sell the batteries, and has since that time continued to supply them as quickly as they are made. At the present writing the factory is running day and night in attempting to keep up with orders.
One of the principal troubles of the earlier cells was a lack of conductivity between the nickel hydrate and the metal tube in which it was contained. Edison had used graphite to obtain this conductivity, but this material proved to be uncertain in some cases. After a long course of study and experiment he solved this problem in a satisfactory manner by using flakes of pure nickel, which he obtained by a most fascinating and ingenious process.
A metallic cylinder is electroplated with alternate layers of copper and nickel, one hundred of each. The combined sheet, which is only as thick as a visiting-card, is stripped off the cylinder and cut into tiny squares of about one-sixteenth of an inch each. These squares are put into a bath which dissolves out the copper. This releases the layers of nickel, so that each of these squares becomes one hundred tiny sheets, or flakes, of pure metallic nickel, so thin and light that when they are dried they will float in the air. These flakes are automatically pressed into the positive tubes with the nickel hydrate in an ingenious machine which had to be specially invented for the purpose.
Not only was this machine specially invented, but it was necessary to invent and design practically all the other machinery that it was necessary to use in manufacturing the battery. Thus, we see that in this, as in many other of Edison's inventions, it is not only the thing itself that has been invented, but also the special machinery and tools to make it.
The principal use that Edison has had in mind for his storage battery is the transportation of freight and passengers by truck, automobile, and street-car. Although at the time of writing this book the improved battery has been on the market a little over two years, great strides have been made in carrying his ideas into effect.
The number of trucks and automobiles using Edison's storage battery already run into the thousands, with more orders than can be immediately filled. The growth of the street-car business has not been so rapid, but the success of the cars so far put into use has been so great that their numbers promise to increase rapidly.